If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-75=0
a = 5; b = 14; c = -75;
Δ = b2-4ac
Δ = 142-4·5·(-75)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{106}}{2*5}=\frac{-14-4\sqrt{106}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{106}}{2*5}=\frac{-14+4\sqrt{106}}{10} $
| 2*37+2*3=20x | | x+2x+3×=12 | | 3y+17=4y-11 | | |3•(x+2)|+6=24 | | F=4.1351351,000f=4,135.135135-f-4.135135 | | -12÷4-y=3 | | (2t-3)^2-12(2t-3)+35=0 | | -2(-8v+7)-2v=(v-4)-2 | | 2*31-2*3=28a | | -(1/2)x-(3/5)=(1/5)x | | 25=3.15x | | 2(31)-2(3)=28a | | p-0.25p=100.95 | | 3x+7=-24 | | p-0.3p=102.62 | | −(23a−13)+53a=−4 | | −(a−3)+2a=−2 | | −(a−3)+2a=−2. | | -2d+-3d=1/6+1/3 | | 125=5x^2+20x+20 | | 4^5x=200 | | 4xx4x=16 | | Y=4x^2-32+10 | | 1/7(7x)=19 | | 9||10=x | | 3(6s-5s)=1/12-1/6 | | 0.33(6x+3)=2.6 | | 8n+n=102 | | 0.5x+0.66=0.33x-0.66 | | 1/4y-3=92 | | 0.4m+2=24 | | 1/2x-5=1/4x-8 |